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Tolypocladium, and Trichoderma). These interactions 
were mediated by abiotic factors, particularly metal 
elements, which were positively correlated with the 
relative abundance of these specific microbial groups 
but negatively correlated with tree richness. Random 
forest analysis revealed that Archaeorhizomyces was 
most strongly correlated to the total basal area of 
evergreen and deciduous trees. Additionally, struc-
tural equation modeling indicated that the indirect 
impact of abiotic factors on Archaeorhizomyces was 
mediated by the total basal area of trees.
Conclusion  Overall, our results provide robust 
observational evidence for the intricate relationship 
between tree diversity and soil microbial communi-
ties at a large scale, revealing that specific microbial 
genera and abiotic factors, particularly metal ele-
ments, play crucial roles in regulating this relation-
ship. Effective management of these interactions is 
essential for maintaining ecosystem function and 
resilience in subtropical forests.

Keywords  Aboveground–belowground interaction · 
Community structure · Deciduous tree · Evergreen 
tree · Forest ecosystem

Introduction

Forested ecosystems, which encompass over 30% of 
the global land surface, are home to more than 3 tril-
lion individual trees across over 73,000 tree species 

Abstract 
Background and aims  Despite increasing evidence 
of strong relationships between plants and soil micro-
bial communities, most studies on this topic have 
been controlled experimental studies at small spatial 
and temporal scales.
Methods  In this study, we examined the relation-
ships between tree communities and soil microbial 
communities by examining 1,287 soil samples col-
lected from a 20-ha subtropical forest plot using high-
throughput sequencing.
Results  We found a negative association between 
above- and belowground biodiversity, primarily 
driven by the interactions between tree communi-
ties and six specific soil microbial genera (Bryobac-
ter, ADurb.Bin063-1, Russula, Archaeorhizomyces, 
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(Crowther et al. 2015; Gatti et al. 2022). These vital 
systems not only harbor significant terrestrial biodi-
versity (FAO and UNEP 2020) but also sequester 
substantial amounts of atmospheric carbon (Pan et al. 
2011), serving as essential buffers against climate 
change (Bonan 2008; O’Connor et al. 2021). Within 
the soil of these forests, microbes—particularly bac-
teria and fungi—form the invisible majority, playing 
a pivotal role in shaping plant productivity and diver-
sity (van der Heijden et  al. 2008; Wei et  al. 2019). 
By controlling key biogeochemical processes, soil 
microbial communities are instrumental in maintain-
ing the multifunctionality of forest ecosystems (Del-
gado-Baquerizo et  al. 2016; van der Heijden et  al. 
2008; Wardle et al. 2004; Wagg et al. 2014). Conse-
quently, considerable effort has been dedicated to elu-
cidating the intricate relationships between trees and 
soil microbes (Rivest et  al. 2019; Wan et  al. 2022). 
The covariation patterns between tree and microbial 
communities reveal the interconnectedness of above-
ground and belowground components of terrestrial 
ecosystems, as well as the potential structural mecha-
nisms that underpin both tree and microbial commu-
nities (Barberán et al. 2015; Li et al. 2015). However, 
findings have been inconsistent, with both positive 
(Chen et  al. 2019; Gao et  al. 2013; Hiiesalu et  al. 
2017; Peay et al. 2013; Strukelj et al. 2021) and nega-
tive (Wan et al. 2022) linkages reported, underscoring 
the strong context dependence of these relationships 
between tree species and soil microbial communities 
(Tedersoo et al. 2016).

The diversity and composition of tree communi-
ties are affected by a variety of environmental fac-
tors, including topography, soil chemistry, spatial 
processes (e.g., dispersal limitation), and stochastic 
factors (e.g., tree death and recruitment; Baldeck 
et al. 2013; De Cáceres et al. 2012). Such variability 
in tree species diversity can, in turn, significantly 
impact microbial diversity (Rivest et  al. 2019) and 
community composition (Barberán et  al. 2015; 
Khlifa et  al. 2017; Schappe et  al. 2017; Wan et  al. 
2022). In a reciprocal manner, microbial diversity 
and abundance are profoundly shaped by trees, 
which act as hosts, modify the soil environment, 
and supply organic matter through litter, root exu-
dates, and fine root turnover (Georgiou et al. 2017; 
Khlifa et al. 2017; Lange et al. 2015; Ma and Chen 
2018; Prescott and Grayston 2013; van der Heijden 
et  al. 2008; Wardle 2006). Higher levels of tree 

diversity, along with increased substrate and habitat 
heterogeneity, are known to foster greater microbial 
diversity (Gao et al. 2013; Hiiesalu et al. 2017; Sin-
gavarapu et al. 2022).

The identity of tree species (e.g., deciduous and 
evergreen trees based on functional traits; Martin-
Guay et  al. 2021) can significantly influence the 
types of microbes present in the soil. Fungi, for 
instance, often exhibit host preferences that domi-
nate their relationships with trees (Tedersoo et  al. 
2010; Wang et  al. 2019). For example, plant path-
ogens and symbionts (e.g., arbuscular mycorrhi-
zal fungi, AMF, and ectomycorrhizal fungi, EMF) 
are significantly linked with tree species as hosts 
(i.e., host trees select specific plant pathogens and 
symbionts; in turn, specific host trees are selected 
by plant pathogens and symbionts) (Li et al. 2021; 
Tedersoo et  al. 2010; Toju et  al. 2013; Yang et  al. 
2019). Deciduous and evergreen trees may coex-
ist in regions with similar climatic conditions but 
differ in functional traits, such as shade tolerance 
and photosynthetic product accumulation (Jin et al. 
2018; Zhang et al. 2021). Deciduous trees typically 
have higher leaf litter nutrient concentrations and 
decomposition rates than evergreen trees (Cornelis-
sen 1996; Freschet et al. 2012; Givnish 2002; Rawat 
et al. 2020), while evergreen trees are often favored 
in nutrient-poor habitats (Baldocchi et  al. 2010). 
According to nutrient transfer theory, deciduous 
species in mixtures with evergreens can promote 
the activity and abundance of soil microorganisms 
involved in decomposition processes and acceler-
ate litter decomposition from evergreen trees (Hät-
tenschwiler et  al. 2005). The associations between 
microbes and tree communities and their potential 
moderating effects may be contingent upon the 
physiological and ecological characteristics of the 
trees. However, the dominant microbial groups 
within tree assemblages and the nuances of their 
relationships with tree identity remain subjects of 
ongoing research.

In our study, we examined a 20-ha stem-mapped 
subtropical forest plot, rich in ecological detail, to 
examine the associations between trees and soil 
microbes and to identify the microbial groups 
that dominated these relationships. Furthermore, 
we determined the microbial group that was most 
strongly correlated with evergreen and deciduous 
trees and tested its responses to abiotic factors.
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Materials and methods

Study site and collection of data on the tree 
community

This study was conducted at the Tiantong National 
Field Observation Station for Forest Ecosystems 
(29°48′ N, 121°47’ E), which is a representative sub-
tropical evergreen broadleaved forest in Zhejiang 
Province, East China. The forest plot was established 
in 2008 as part of the Forest Global Earth Observa-
tory network (https://​fores​tgeo.​si.​edu/) and covered 
a total area of 20  ha (500  m × 400  m) (Qiao et  al. 
2020). Topographic data (elevation, slope, and con-
vexity) for the plot were collected and converted into 
topographic data for each sampling point using the 
Kriging interpolation method (Oliver and Webster 
1990).

Tree distribution was determined using tree spe-
cies counts from July to October 2010, 2015, and 
2020. Data from the most recent 2020 inventory 
were used as those best matched the time of soil 
microbial collection and analysis (2018). The tree 
data were collected using standardized methods 
(Condit 1998). All stems with a diameter at breast 
height (DBH) ≥ 1.0 cm (at 1.3 m above ground) were 
measured, tagged, and identified to the species level. 
Detailed information about the tree species is pre-
sented in Table  S1. For the analyses, tree richness 
and assemblages (i.e., abundance and total basal area) 
were determined at four neighborhood scales (i.e., 
within circles with radii of 5, 10, 15, and 20 m around 
the corresponding soil sampling site). Briefly, all tree 
species were first divided into deciduous and ever-
green trees based on their functional characteristics, 
and the total number of individuals at a given neigh-
borhood level was considered as tree abundance. The 
total basal area of all trees (calculated for each tree as 
π × (DBH/2)2; Bettinger et  al. 2017) at each neigh-
borhood scale was summed and used as an indicator 
of total biomass present.

Soil sampling

Soil sampling was carried out according to the pro-
cess reported by Wu et  al. (2023). Briefly, after 
removing the surface litter and organic layer, we 
took four soil cores from the mineral layer (0–10 cm 

depth) using a soil auger with a 10-cm inner diameter 
within 0.5 m around each selected sampling point to 
form a composite sample. In total, 1,287 soil samples 
were collected around all selected sampling points 
(Fig. S1). Each soil sample was passed through a ster-
ilized 2-mm sieve to remove visible stones and roots 
and was then divided into three subsamples. One sub-
sample was stored at − 80 °C before DNA extraction 
for molecular analyses. The second sample was stored 
at 4 °C for the analysis of ammonium (NH4

+-N) and 
nitrate (NO3

--N), which were extracted with 1 M KCl 
and measured using a continuous flow analyzer. The 
third subsample was air-dried, and other properties, 
including pH, soil moisture (SM), organic carbon 
(OC), total nitrogen (TN), total phosphorus (TP), 
available phosphorus (AP), available potassium (AK), 
aluminum (Al), calcium (Ca), copper (Cu), iron (Fe), 
magnesium (Mg), manganese (Mn), and zinc (Zn), 
were measured using the methods described in the 
supplementary file (Supplementary Methods).

Soil microbial DNA extraction and polymerase 
chain reaction (PCR) amplification

DNA was extracted from 0.5  g of soil per sample 
using a MagPure Soil DNA KF Kit (Magigene Bio-
technology Co., Ltd. Guangzhou, China) according 
to the manufacturer’s instructions. DNA quality was 
assessed using 1% agarose gels, and its concentration 
and purity were determined using a NanoDrop One 
(Thermo Fisher Scientific, Waltham, MA, USA). For 
bacterial analyses, the V4–V5 hypervariable regions 
of the 16 S rRNA gene were sequenced using the uni-
versal primers 515  F (5′-GTG​CCA​GCMGCC​GCG​
GTAA-3′) and 907R (5′-CCG​TCA​ATTCMTTT​RAG​
TTT-3′). For fungal analyses, PCR amplification of 
the second internal transcribed spacer (ITS2) bar-
code region was performed using the primers ITS3 
(5′-GCA​TCG​ATG​AAG​AAC​GCA​GC-3′) and ITS4 
(5′-TCC​TCC​GCTTA TTG​ATA​TGC-3′). The prim-
ers were synthesized by Invitrogen (Carlsbad, CA, 
USA). For amplification, a mixture of 25 µL 2× of 
Premix Taq (Takara Biotechnology (Dalian) Co. 
Ltd., China), 1 µL of each primer (10 µM), 20 µL 
nuclease-free water and 3 µL DNA template (20 ng/
µL) in a volume of 50 µL was used. Samples were 
then amplified on a Bio-Rad S1000 thermal cycler 
(Bio-Rad Laboratory, Hercules, CA, USA) with the 

https://forestgeo.si.edu/
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following settings: 94  °C for 5  min, followed by 30 
cycles of denaturation at 94  °C for 30  s, annealing 
at 52  °C for 30  s, elongation at 72  °C for 30  s, and 
final extension at 72 °C for 10 min. The PCR product 
length and concentration were determined using 1% 
agarose gel electrophoresis. The PCR products were 
mixed in equidensity ratios according to GeneTools 
Analysis (v.4.3.5, SynGene). The PCR products were 
purified using an EZNA® Gel Extraction Kit (Omega 
BioTek, Norcross, GA, USA). Sequencing libraries 
were generated using the NEBNext® Ultra™ DNA 
Library Prep Kit for Illumina® (New England Bio-
labs, Ipswich, MA, USA) following the manufactur-
er’s protocol.

Sequence data processing

The DNA samples were sequenced using an Illumina 
HiSeq 2500 platform (Guangdong Magigene Biotech-
nology Co., Ltd. Guangzhou, China). Raw FASTQ 
files were demultiplexed, quality-filtered using Trim-
momatic (Bolger et  al. 2014), and merged using 
FLASH (Magoc and Salzberg 2011) with the fol-
lowing criteria: (i) reads containing N, with a quality 
score < 20 and a sequence length < 100-base pair (bp) 
were filtered; (ii) sequences with an overlap > 10  bp 
were merged according to their overlapping 
sequences. The maximum allowable error ratio of the 
overlapping region was 0.1, and reads that could not 
be assembled were discarded; (iii) sequences were 
assigned to each sample according to the barcodes 
and primers using the Mothur software (Schloss 
et  al. 2009). The barcode allowed two deviations, 
with three as the maximum number of mismatches. 
The barcodes and primers were then removed, and 
high-quality clean tags were obtained (Bokulich et al. 
2013). Operational taxonomic units (OTUs) with a 
97% similarity cutoff were clustered using the USE-
ARCH software (Edgar 2010), and singleton OTUs 
and chimeric sequences were removed. The taxon-
omy of each bacterial sequence was assigned using 
the SILVA database (https://​www.​arb-​silva.​de/), and 
that of each fungal sequence was assigned using the 
UNITE database (http://​unite.​ut.​ee/​index.​php). The 
sequences of all samples were rarefied according to 
the minimum sequence number (11,155 for bacte-
ria and 24,400 for fungi) to correct for differences 
in sequencing depth. Before rarefaction, there were 

26,972 bacterial and 31,520 fungal OTUs in total; 
after rarefaction, 24,367 bacterial and 29,838 fungal 
OTUs were obtained. After deleting the OTUs with 
sequence numbers less than 20 across all samples 
(Jiao and Lu 2020), 8,373 bacterial and 11,961 fun-
gal OTUs were obtained. Each identified fungal OTU 
was assigned to putative AMF, EMF, plant patho-
gens, or saprotrophic fungi with a confidence level of 
“highly probable” or “probable” using the FUNGuild 
database (Nguyen et al. 2016; http://​www.​stbat​es.​org/​
guilds/​app.​php).

Co‑occurrence network analysis

An integrated OTU table of both bacterial and fungal 
OTUs was used to construct a network to visualize 
the cross-trophic interactions between bacteria and 
fungi. This was done using a log-transformed Pearson 
correlation matrix that was constructed by the Molec-
ular Ecological Network Analysis Pipeline (MENAP; 
http://​ieg4.​rccc.​ou.​edu/​mena/​login.​cgi; Deng et  al. 
2012; Zhou et al. 2010; Zhou et al. 2011). Only the 
OTUs detected in more than 644 replicates (half of 
the 1287 soil samples) were used for network con-
struction to ensure correlation reliability for network 
analysis. In ecological count data, a large portion 
of the sequencing data is made of zeros. Zero-value 
matching of two taxa produces a false strong correla-
tion. A conventional way to deal with this problem is 
to remove taxa that occur in a few samples to avoid 
spurious correlations (Faust 2021). Although remov-
ing rare OTUs could destroy the network structure, 
a high rate of false positive results would be more 
destructive (Weiss et  al. 2016). Molecular ecologi-
cal networks (MENs) were constructed by setting 
appropriate St following the random matrix theory 
(RMT). The RMT-based approach is a reliable, sen-
sitive, and robust tool for analyzing high-throughput 
genomics data for modular network identification 
(Deng et al. 2012; Shi et al. 2016). In each molecu-
lar ecological network, nodes represented the OTUs, 
and edges denoted the correlations between one OTU 
and another. Modules were detected using the greedy 
modularity optimization method because this method 
is more effective and sensitive at separating a com-
plex network into modules compared to other meth-
ods, such as the short random walk, leading eigenvec-
tor of the community matrix, and simulated annealing 

https://www.arb-silva.de/
http://unite.ut.ee/index.php
http://www.stbates.org/guilds/app.php
http://www.stbates.org/guilds/app.php
http://ieg4.rccc.ou.edu/mena/login.cgi
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methods (Deng et al. 2012; Shi et al. 2016). The mod-
ule eigengene E (the first principal component (PC1) 
of modules) of the top three modules for the inte-
grated network was calculated to examine the correla-
tions between modules and abiotic factors (Ma et al. 
2020). The network was visualized with Cytoscape 
(version 3.8.2).

Statistical analyses

The corr.test function of the psych R package was 
used to detect the relationships between microbial 
richness and tree richness (Revelle 2022). Correla-
tions between microbial richness and tree assem-
blages were analyzed using the mantel_test function 
of the linkET package in R (Huang 2021). Here, only 
species richness was used as a measure of microbial 
biodiversity as it was significantly correlated with the 
other diversity indices (Fig.  S2; Spearman’s | r | > 
0.55 for bacteria and > 0.66 for fungi).

We generated a NMDS ordination of tree commu-
nity based on the Bray–Curtis dissimilarity matrix, 
and then used the ordisurf function within the vegan 
package (Oksanen et al. 2022) to fit the abiotic vari-
ables to tree community ordination using general-
ized additive models (GAMs; Sweeney et  al. 2021). 
These models fitted the abiotic variables as a smooth 
response surface over the tree community ordination 
accounting for both NMDS axes.

We calculated the Spearman correlation between 
abiotic and biotic factors in R using the psych pack-
age (Revelle 2022) to estimate the importance of 
specific abiotic factors on the relative abundance of 
individual microbial genera. We also built multiple 
linear regression models of abundance as a function 
of edaphic and topographic (slope, elevation, con-
vexity) predictors. All abiotic variables were first 
standardized (mean = 0, SD = 1). To find the most 
parsimonious model, we started with a global model 
that included all predictors and compared all possible 
subset models using the stepAIC function from the 
MASS R package (Venables and Ripley 2002). The 
model with the lowest Akaike Information Criterion 
was selected as the top-ranked model (Burnham and 
Anderson 2002). To quantify the explained variation 
for each of the predictors retained in the top-ranked 
model, we used variance decomposition imple-
mented with the relaimpo package (Grömping 2006). 

Regression models were fitted by using the lm func-
tion of the stats R package (Field et al. 2012).

To identify the major microbial predictors of the 
total basal area of deciduous and evergreen trees, we 
used random forest models, implemented with the 
randomForest package (Liaw and Wiene 2002). The 
contribution of each function was quantified as the 
percentage increase in mean squared error (MSE) 
of out-of-bag predictions when that function was 
removed, implemented with the rfPermute pack-
age (Archer 2022), where higher increases in MSE 
implied more important taxon (Breiman 2001; Jiao 
et al. 2018).

We then depicted hypothesized direct and indirect 
effects of abiotic factors and deciduous and evergreen 
trees on the strongest microbial predictor of tree total 
basal area by developing a causal path model, using 
the lavaan package (Rosseel 2012). We used the 
stepAIC function from the R package MASS (Vena-
bles and Ripley 2002) to identify the parsimonious 
model for explaining variations in tree total basal 
area from a global model including all abiotic factors. 
For the path analysis, all predictors were standard-
ized (mean = 0, SD = 1) to improve normality. Sup-
port for the causal path models was evaluated using 
the following criteria: non-significant Chi-square 
test (p > 0.05), goodness-of-fit index > 0.90, and root 
mean square error of approximation < 0.08 (Scher-
melleh-Engel et  al. 2003). All analyses were per-
formed in R version 4.2.1).

Results

Characteristics of tree species and soil microbial 
communities

Over the entire 20-ha forest dynamic plot, a total 
of 106,551 individual trees of 148 species with 
DBH ≥ 1.0 cm were recorded in the inventory of 2020. 
The average tree species richness was 13.18 (± 5.75) 
for the 5  m radius around each sampling plot, 26.10 
(± 7.74) for the 10 m radius, 36.09 (± 8.14) for the 15 m 
radius, and 44.46 (± 8.14) for the 20 m radius. Eurya 
loquaiana (Theaceae, evergreen), Litsea elongata (Lau-
raceae, evergreen), and Camellia fraterna (Theaceae, 
evergreen) were the top three species with the most 
individuals (> 104) in the plot. Choerospondias axilla-
ris (Anacardiaceae, deciduous), Lithocarpus harlandii 
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(Fagaceae, evergreen), and Cyclobalanopsis sessilifolia 
(Fagaceae, evergreen) were the three species with the 
largest total basal areas (Fig. S3). During 2010—2020, 
the total number of individuals increased by 14,004 
during the first 5 years and decreased by 2,541 during 
the last 5 years (Fig.  S3). Furthermore, the tree rich-
ness decreased from 154 (79 deciduous and 75 ever-
green tree species) in 2010 to 148 (73 deciduous and 
75 evergreen tree species) in 2020. Seven tree species 
disappeared, namely Aralia echinocaulis, Buddleja 
lindleyana, Oreocnide frutescens, Photinia beauverdi-
ana, Phyllanthus glaucus, Rhamnus crenata, and Tra-
chycarpus fortune, and the newly occurring tree species 
(Machilus pauhoi) was recorded (DBH < 1 of the first 
two inventories; Fig. S3). Most measured soil proper-
ties and topographic attributes (e.g., Zn, convexity, TN, 
elevation, TP, and Mn) were predictive of tree commu-
nity composition, represented by the NMDS ordina-
tion of these communities (Fig. 1; Table S2). Zn was 
the strongest determinant of tree community structure, 
with Ca explaining a low amount of deviance within 
our models (Table S2).

For soil microbes, the bacterial communities were 
dominated by Proteobacteria with 2,688 OTUs and 
Acidobacteria with 997 OTUs (Fig.  S4). Ascomy-
cota in fungi was the most abundant fungal phylum 
across all samples with 5,622 OTUs. Moreover, 1,786 
OTUs of saprotrophic fungi (14.93%), 442 OTUs of 
EMF (3.70%), 374 OTUs of plant pathogenic fungi 
(3.13%), and 306 OTUs of AMF (2.56%) were identi-
fied across all samples.

Relationships between tree assemblages and soil 
microbial communities

There were significant negative correlations 
between tree richness and microbial richness 

(Fig. 2a). Specifically, the richness of three bacterial 
(i.e., Bryobacter, ADurb.Bin063-1, and Mucilagini-
bacter) and five fungal (i.e., Russula, Cryptococcus, 
Archaeorhizomyces, Tolypocladium, and Tricho-
derma) genera was significantly and negatively cor-
related with tree richness (Fig.  2b). Furthermore, 
bacterial genus ADurb.Bin063-1 as well as fungal 
genera Russula and Archaeorhizomyces were sig-
nificantly correlated with the tree assemblages, and 
bacterial genus Bryobacter as well as fungal genera 
Tolypocladium and Trichoderma were significantly 
correlated with the tree total basal area (Fig.  2c). 
Overall, these six specific soil microbial genera 
(Bryobacter, ADurb.Bin063-1, Russula, Archae-
orhizomyces, Tolypocladium, and Trichoderma) 
dominated the negative associations between above- 
and belowground biodiversity.

Effects of abiotic factors on the relative abundance of 
the six specific genera

We first analyzed the impact of soil properties 
and topographic attributes on network modules 
by constructing an integrated network, which was 
clustered into three major interconnected mod-
ules (Fig.  3a). On the whole, the top three mod-
ules were positively correlated with pH, Mg, Mn, 
and Zn, while negatively correlated with OC, TN, 
NH4

+-N, SM, and topographic attributes (Fig.  3b). 
Interestingly, the relationships between the relative 
abundance of the six specific genera and abiotic 
factors exhibited similar patterns to those between 
the major modules and abiotic factors (Fig.  3c; 
S5). Specifically, soil properties and topographic 
attributes were associated with the relative abun-
dance of individual bacterial genus, explaining 
46.76% of variation for Bryobacter, and 38.36% 
of variation for ADurb.Bin063-1 (Fig.  3d). Across 
these two bacterial genera analyzed, pH, TN, Mg, 
and Mn were more influential than other factors, 
although the direction and magnitude of correla-
tion varied within and among taxa (Fig.  3d). Abi-
otic factors were also correlated with specific fungal 
genera abundance but accounted for less variation 
(~ 4.14–5.71%, Fig.  3d). Notably, the direction of 
association with abundance for many influential 
edaphic factors were opposite for bacteria and fungi 
(especially AP and Al, Fig. 3c, e).

Fig. 1   Results from the generalized additive models fitting 
abiotic factors across the nonmetric multidimensional scaling 
(NMDS) ordination of tree assemblages. (a) Based on the tree 
abundance. (b) Based on the tree total basal area. Splines show 
the fit of the abiotic variables from high values (dark) to low 
values (light) over the ordination. The abiotic variables over-
lay indicates that tree community, as represented by the points 
on the NMDS, are associated with higher or lower predictor 
variables in line with the colored abiotic variables gradient. 
Nonlinear relationships between the abiotic variables and tree 
community are represented by curved splines. ‘de’ shows the 
deviance explained by the respective model. Only the top six 
strong determinants of tree community structure were shown

◂
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Contributions of six specific genera to evergreen and 
deciduous trees

Random forest analysis revealed that the richness of 
Archaeorhizomyces was most strongly correlated to 
the total basal area of evergreen and deciduous trees 
(Fig. 4a). Our structural equation modeling results indi-
cated that abiotic factors had a direct effect on the total 
basal area of trees, with certain soil properties (e.g., 
TN, TP, Al, and Cu) demonstrating contrasting effects 

on the evergreen vs. deciduous trees (Fig.  4b; S6). 
Notably, the total basal area of evergreen trees nega-
tively affected the richness of Archaeorhizomyces while 
deciduous trees positively affected that of Archaeorhi-
zomyces, and abiotic factors also had strong direct 
effects on Archaeorhizomyces (R2 = 0.35; Fig. 4b). This 
resulted in an indirect causal pathway between abiotic 
factors and Archaeorhizomyces mediated by the total 
basal area of trees (Fig. 4b).

Fig. 2   Relationships between microbial richness and tree 
communities. (a) Overall correlations between microbial rich-
ness and tree richness. (b) Correlations between microbial 
genus richness and tree richness. Only microbial genera with 
average relative abundance greater than 0.5% are shown. The 
color gradient on the right indicates Spearman’s correlation 
coefficients, with more positive values (dark blue) indicating 
stronger positive correlations and more negative values (dark 
red) indicating stronger negative correlations. The p values 

were adjusted by false discovery rate. Significance levels are as 
follows: ***p < 0.001, **p < 0.01, *p < 0.05. (c) Correlations 
between microbial genus richness and tree assemblages (tree 
abundance and total basal area) within a 20 m radius of the soil 
sampling site. Edge width corresponds to the Mantel’s r value, 
and the edge color denotes the statistical significance. Pairwise 
correlations of these variables are shown with a color gradient 
denoting Spearman’s correlation coefficient
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Discussion

In this study, we conducted a thorough investiga-
tion into the profound interdependence of above- and 
belowground systems within a representative sub-
tropical forest area. Utilizing comprehensive soil 
sampling coupled with detailed characterization of 
both microbial communities and tree assemblages, 
our study provides novel insights into the intricate 
interplay between above- and belowground biodi-
versity. While previous research has often exam-
ined these interactions in controlled experiments, 
we explored these relationships within a large-scale, 
naturally occurring system, revealing unique patterns 
and offering new perspectives on the factors shaping 
above- and belowground interactions.

Contrary to expectations from previous studies 
(Chen et  al. 2019; Gao et  al. 2013; Hiiesalu et  al. 
2017; Peay et  al. 2013; Strukelj et  al. 2021), we 
found a significant negative correlation between tree 
richness and soil microbial richness (Fig.  2a). Sev-
eral ecological processes and theories might explain 
this negative correlation. One explanation is the 
resource competition theory, which suggests that as 
tree diversity increases, competition for belowground 
resources such as nutrients and water intensifies 
among tree species (Tilman 1982). Moreover, more 
competitive species generally utilize resources with 
greater efficiency under the framework of the selec-
tion effect (Fox 2005), and competition among trees 
can lead to a reduction in the allocation of resource 
to belowground biomass (Martin-Guay et  al. 2019), 
particularly reducing carbon allocation to coarse 
root components with diameters greater than 10 cm 
(Men et  al. 2023). Root-derived carbon constitutes 
the predominant (> 60%) carbon source for forest 
soil microbes (Kramer et al. 2010). Total soil micro-
bial biomass may markedly decline as tree species 
richness increases (Wan et  al. 2022). Thus, intensi-
fied tree competition may reduce belowground car-
bon allocation and nutrient availability for micro-
bial communities, ultimately decreasing microbial 
diversity. Additionally, the high diversity of tree spe-
cies may promote the production of a wider array of 
allelochemicals or secondary metabolites, including 
phenolics, terpenoids, and alkaloids. These metabo-
lites can impact soil microbial reproduction and 
activity, thereby potentially reducing soil microbial 
diversity (Berendsen et al. 2012; Reigosa et al. 2002; 

Uhlik et al. 2013). Finally, varying litter quality and 
quantity resulting from diverse tree species can lead 
to heterogeneous decomposition environments that 
might favor only certain microbial groups adapted to 
specific decomposition processes, instead of support-
ing a rich microbial community (Hättenschwiler et al. 
2005).

This unexpected pattern challenges the often-
assumed positive relationship between tree species 
richness and soil microbial diversity. In particular, 
our findings suggest that the richness of specific 
microbial genera negatively correlates with tree rich-
ness (Fig. 2). Members of the Russula genus, which 
are pivotal plant root mutualists, particularly in for-
ested ecosystems, function as EMF (Gao et al. 2015; 
Looney et  al. 2020). This ectomycorrhizal associa-
tion creates a close link between Russula and spe-
cific tree hosts (e.g., Fagaceae family) for nutrient 
exchange, which can lead to the competitive exclu-
sion of other fungi (Peay et  al. 2007). Additionally, 
Trichoderma fungi, renowned for their rapid mycelial 
growth and their adaptability to a range of environ-
mental conditions (Yao et al. 2023), excel in outcom-
peting pathogenic fungi in the root zone, effectively 
preventing the spread of disease (Druzhinina et  al. 
2018). Trichoderma also actively absorbs essential 
nutrients for pathogen development, thereby creat-
ing a nutrient scarcity that hampers the growth and 
reproduction of harmful fungi (Bazghaleh et  al. 
2020). Nevertheless, pathogens have the potential to 
shape tree communities and enhance diversity by lim-
iting the dominance of certain tree species through 
plant-soil feedback mechanisms (Bagchi et  al. 2014; 
Liang et al. 2016). Consequently, the suppression of 
pathogens by Trichoderma may ultimately contribute 
to the dominance of some tree species and a potential 
reduction in overall diversity of tree species. These 
findings underscore the importance of considering 
specific taxa, rather than simply focusing on overall 
richness, when investigating above- and belowground 
interactions.

These specific genera mentioned may occupy 
specialized ecological niches and possess environ-
mental preferences that are not conducive to pro-
moting higher tree diversity. Soil metal elements are 
primary predictors of the structure and function of 
soil microbial communities (Dai et  al. 2023), align-
ing with findings from a prior study conducted in 
this forest plot (Wu et al. 2023). Our study revealed 
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that metal elements, particularly Zn, Mn, Mg, and 
Ca, had contrasting roles with specific microbial 
groups (positively) and tree communities (negatively) 
(Fig.  3c; S7). In the acidic soils of this study (pH: 
2.79–5.79), the high solubility of Zn and Mn can lead 

to excessive absorption by plants, resulting in toxic 
effects (DalCorso et  al. 2014; Hansch and Mendel 
2009). Elevated levels of soil Zn can cause nutritional 
imbalances that primarily affect root systems, ulti-
mately hindering the growth of tree seedlings (Souza 
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et  al. 2020). Additionally, Mn2+ is significant in lit-
ter decomposition (Keiluweit et  al. 2015). However, 
excess Mn can trigger the production of reactive oxy-
gen species, causing oxidative damage to proteins 
and lipid peroxidation, as well as inducing deficien-
cies of Mg and Ca (DalCorso et al. 2014). Mg defi-
ciency can impair chlorophyll synthesis, negatively 
impacting photosynthetic efficiency, and thereby 
restricting tree growth and development (Marschner 
2012). Furthermore, Mg deficiency can diminish the 
plant’s resistance to environmental stressors, lead-
ing to increased tree mortality rates and a decrease 
in overall tree diversity (Marschner 2012). A reduc-
tion in Ca concentration elevates the susceptibility of 
xylem tissue to fungal invasion, which exacerbates 
the dissolution of cell walls in conductive vessels, 
ultimately resulting in plant wilting (Hirschi 2004). 
Moreover, Bryobacter, an acid-tolerant and strictly 
aerobic organism, thrives in acidic soils (Dedysh 
et al. 2006; Wang et al. 2022b). The acidic conditions 
prevalent in the study plot create a favorable environ-
ment for Bryobacter, while simultaneously dimin-
ishing the diversity of aboveground communities 
due to an increase in H+ and Al3+ ion concentrations 
(Chen et al. 2013). Consequently, abiotic factors play 

a crucial role in mediating the negative relationships 
observed between specific microbial groups and tree 
communities.

Given that various trees (e.g., evergreen vs. decid-
uous) foster distinct microbial communities through 
root exudates (Chandra et  al. 2016), shifts in tree 
species composition can strongly impact soil micro-
bial communities (Eisenhauer et  al. 2017; Prescott 
and Grayston 2013). Moreover, shifts in tree species 
composition can also lead contextual changes that 
may impact microbial communities. For example, 
different tree species exhibit significant variations in 
litter chemical characteristics (Binkley and Giardina 
1998), and the changing composition of tree species 
will influence soil fertility due to differences in lit-
ter quality which largely determines the rate of lit-
ter decomposition, subsequently affecting release 
of nutrients into the soil (Aponte et al. 2013; Norris 
et al. 2013). Tree species composition can also influ-
ence light transmittance through the canopy (Canham 
et al. 1994), thereby affecting the availability of light 
beneath the canopy (Forrester et al. 2017; Ligot et al. 
2016).

Evergreen and deciduous trees exhibit several dif-
ferences, such as leaf lifespan (Givnish 2002), fine 
root biomass (Liu et  al. 2014), and nutrient acquisi-
tion strategies (Guo et  al. 2020). Specifically, ever-
green trees, with their longer leaf lifespans and 
greater fine root biomass (Gonzalez-Zurdo et  al. 
2016; Liu et al. 2014), contrast with deciduous trees, 
which are characterized by acquisitive strategies (Guo 
et al. 2020). These inherent differences fundamentally 
affect how each tree type responds to various abiotic 
factors in their environment, leading to divergent 
ecological impacts. In general, evergreen trees can 
have greater impacts on soil microbes via litter than 
deciduous trees (Augusto et al. 2002; Urbanová et al. 
2015). For example, the acidic litter produced by cer-
tain evergreen conifers can induce the development 
of fungi-dominated soil ecosystems, creating an envi-
ronment that supports specific microbial communities 
(van der Heijden et al. 2008). This phenomenon may 
explain why the impact of evergreen tree species on 
Archaeorhizomyces, which relies on host plants for 
nutrition (Rosling et  al. 2011), is more pronounced 
compared to deciduous tree species (Fig. 4b). Archae-
orhizomyces has the capacity to enhance the bioac-
tive components in plants, bolster their resistance to 
stress, and prevent the onset of plant diseases (Zhang 

Fig. 3   Relationships between abiotic factors (soil and topo-
graphic factors) and microbial communities. (a) Co-occurrence 
patterns in the integrated network. Interconnected modules 
shown in circular layout for the composite bacterial–fungal 
network. Different colored nodes represent different modules 
in top three modules. Red and blue links indicate positive and 
negative correlations between nodes, respectively. (b) Correla-
tions between the top three modules in the networks and soil 
environmental parameters. (c) Correlations between the rela-
tive abundance of six specific microbial genera and environ-
mental parameters. The color gradient on the right indicates 
Spearman’s correlation coefficients, with more positive values 
(dark blue) indicating stronger positive correlations and more 
negative values (dark red) indicating stronger negative cor-
relations. The p values were adjusted by false discovery rate. 
Significance levels are as follows: ***p < 0.001, **p < 0.01, 
*p < 0.05. (d) Contributions of abiotic factors to the differences 
in relative abundance of six specific microbial genera based on 
correlation and top-ranked regression models. We examined 
the correlations of these values with the differences in soil and 
topographic factors for each pairwise set of soil samples and 
identified the major predictors. The bar chart represents the 
total contributions of soil and topographic factors to explain 
microbial variation (calculated by multiple regression mod-
eling). All of the models had a type 1 error < 0.001. (e) The 
importance of abiotic factors on six specific microbial genera. 
Circle size in the heatmap represents variable importance, and 
colors represent Spearman correlations

◂
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et  al. 2020). Interestingly, there exists a significant 
positive correlation between deciduous tree species 
and Archaeorhizomyces with putative saprotrophic 
activity (Rosling et  al. 2011). This correlation may 
stem from the fact that deciduous trees, through their 
acquisitive strategies, contribute more substantially to 
carbon accumulation in the mineral horizon compared 
to evergreen trees, which typically have conservative 

strategies (Cotrufo et  al. 2015). Additionally, the 
increased productivity of deciduous tree species 
promotes the variety of organic substrates entering 
the soil in the form of litter, thereby increasing the 
niches that can be occupied by heterotrophic fungi 
(Peay et al. 2013). In summary, the contrasting char-
acteristics and strategies of evergreen and deciduous 
trees lead to differing impacts on Archaeorhizomyces, 

Fig. 4   Relationships 
between six specific genera 
and the total basal area 
of evergreen and decidu-
ous trees. (a) Topmost 
influential soil microbial 
genera (based on richness) 
driving the total basal area 
of deciduous and evergreen 
tree. The accuracy impor-
tance measure is computed 
for each tree and averaged 
over the forest (1,000 trees). 
Percentage increases in the 
mean squared error (MSE) 
of variables are used to 
estimate the importance 
of these predictors, and 
higher MSE% values imply 
more important predic-
tors. Significance levels 
are as follows: **p < 0.01, 
*p < 0.05. (b) Causal path 
models for direct and 
indirect effects of abiotic 
factors (soil properties and 
topographic attributes) and 
the total basal area of ever-
green trees and deciduous 
trees on Archaeorhizomyces 
richness. Solid and dashed 
arrows indicate significant 
and non-significant relation-
ships, respectively. R2 val-
ues denote the proportion of 
variance explained for each 
variable. ***, p < 0.001; **, 
p < 0.01; *, p < 0.05
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which is most strongly correlated to the total basal 
area of evergreen and deciduous trees.

In our study, over 1,000 soil samples from a 20-ha 
stem-mapped subtropical forest with an extensive 
count of tree species were integrated, totaling more 
than 100,000 individuals with a DBH of 1  cm or 
greater. This wealth of data significantly enhances our 
predictive capabilities regarding forest development 
within contiguous natural ecosystems. Our analy-
sis revealed that six prominent taxonomic groups, 
Bryobacter, ADurb.Bin063-1, Russula, Archaeorhi-
zomyces, Tolypocladium, and Trichoderma, primar-
ily dominated the negative associations between 
above- and belowground biodiversity. While a signifi-
cant correlation was evident between microbial com-
munities and tree assemblages, discerning definitive 
causality remains a challenge inherent in large-scale 
observational studies. Such limitations call for further 
exploration through targeted follow-up experiments. 
Inspired by the successful application of a limited 
number of key microbial taxa in agroecosystems (Fan 
et al. 2021; Wang et al. 2022a; Zheng et al. 2021), we 
can isolate those microbial taxa that demonstrate pos-
itive interactions with trees and exhibit antagonistic 
effects against other microbes dominating the nega-
tive associations between above- and belowground 
biodiversity (e.g., Acidibacter, Aquisphaera, Acidi-
caldus, and Tomentella). These isolated microbial 
taxa will be introduced into forest soils as inoculants 
(or biofertilizers), thereby allowing for the evaluation 
of their subsequent effects on tree growth and diver-
sity. Consequently, it is expected that the resilience 
and functioning of natural forests may be promoted 
by regulating these key soil taxa.

The ongoing advancements in metagenomic 
methodologies promise to shed light on the intricate 
relationships between microbial functions and the 
dynamic shifts in tree populations over time, such as 
demographic rates across a decade. These methodo-
logical improvements will be instrumental in deep-
ening our understanding of the complex interplay 
between trees and soil microbes in forest ecosys-
tems. Particularly, in the context of climate change, 
investigating the alterations in the interdependence 
between above- and belowground systems in forests 
is a critical issue. Climate change has a potential to 
disrupt the symbiotic relationships between trees and 
fungi (Fernandez et al. 2023). Additionally, declines 
in soil microbial diversity induced by warming may 

substantially impair the functioning of forest ecosys-
tems (Delgado-Baquerizo et  al. 2016; Guo 2022), 
thereby potentially posing a significant threat to forest 
health (Trumbore et al. 2015).
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